Skip to content
  • Home
  • University
  • Developers
  • API
  • Releases
  • Status
  • Home
  • University
  • Developers
  • API
  • Releases
  • Status
Home Success Guides Product Management Product Management: Measure the Influence of a Feature
Getting Started Installation Administration Define & Analyze Analysis Examples Heap Plays Success Guides Integrations Heap Connect Data Privacy

Read in Order

  1. Product Management: Overview
  2. Product Management: Define Your Roadmap
  3. Product Management: Measure the Influence of a Feature
  4. Product Management: Fix Usability Bottlenecks
  5. Product Management: Analyze Different Personas

Table of Contents

Was this article helpful?

Yes No

Thank you for your feedback!

Product Management: Measure the Influence of a Feature

View instructions for: 

When it comes to making critical product decisions, data is essential for getting your team on board and establishing credibility. In addition to interaction data coming from raw event counts, you can use Heap to measure the influence of a feature by tracking the correlation between interacting with your feature and other key metrics such as conversion, upgrades, and retention.

Is performing event x correlated with the use of feature y?

Our Graph module allows you to segment users into groups based on how many times they have performed an action or whether they have performed an action at all. Using group by has done event X, you can see whether or not an action is performed more often based on the correlation with a separate event.

For example, we want to see if attending a training is correlated with an increase in the number of times that a feature is used. To graph this:

Step 1: Graph Define/Update Event

Step 2: Group by has done Attended Training Session

Graph of Count Click - Define/Update event grouped by users who have done Attend Triann Session

In this example, we can see that Attending a Training shows a strong correlation with an increase in performing the Define/Update Event event.

The results of the previous query as a line graph

Similarly, if you want to determine the correlation between multiple sessions and an event, you can group by count of instead of has done.

A graph of Count Click - Define/Update Event grouped by Users who have done a count of Sessions

This will give you a breakdown of the number of sessions a user has had, along with event counts for users in each category. You can modify this query to contain count of Sessions rather than has done to measure the relationship between the number of times an event has been performed with, in this case, Click Define/Update an Event.

A bar chart of the previous query

Does the interaction correlate with higher rates of conversion?

Step 1: First make sure you have an event or event combo defined that captures the interaction with the feature in focus.

Step 2: Create a funnel that walks through key steps in your product such as a simple conversion flow for a signup, upgrade, or checkout flow depending on your use case.

Step 3: Group by users who have done your_event (in this example, Watched Onboarding Video).

A funnel of onboarding steps 1, 2, and 3 grouped by users who have watched an onboarding video

This will show the breakdown in conversion rate based on whether or not users have performed your event.

The results of the previous query

You can dive deeper by grouping by count of the event you’re analyzing, such as for our example of Watched Onboarding Video. This will show you how the number of times your event is performed relates to the conversion rate. Feel free to set filters to limit the results displayed.

Does the interaction correlate with a higher retention rate?

Step 1: First make sure you have an event or combo event defined that captures the interaction with the feature in focus.

Step 2: Create a retention report from either session to session or engagement action to engagement action.

Step 3: Group by users who have done your_event.

A retention analysis with start and end session events grouped by users who have completed a purchase
The results of the previous analysis

This will show the breakdown in retention rate, or how often someone returns to do action X, based on whether or not users have performed your event. Similarly, you can dive deeper by grouping by count of your_event. This will show you how the number of times your_event is performed is related to the retention rate. Once again, you can limit the results displayed by adding filters.

Does the interaction reduce the amount of time it takes to perform another KPI?

Step 1: In the retention tool, select Session for first event, and your KPI for second event

Step 2: Group by has done your_event

Step 3: Select first time at the bottom of the query builder

A date range set to past 30 days with the first time box checked

This will show you the days/weeks/months it takes a user to complete action 2 after they have completed action 1 depending on the granularity you select. This example shows the majority of users complete the second event within the same day as the first, but a small percentage complete the second event one to two days later.

Understand your user’s ‘Aha Moment’

You can also use Heap to determine that ‘Aha Moment; for users – what actions indicate that a user will be a loyal adopter of your product. After determining which features have the largest effect on retention (find how to by reviewing Does the interaction correlate with higher rates of conversion?), you will want to see how interacting with that feature influences retention. How many times does a user have to do x before your app becomes sticky? In order to assess the turning point where a user is hooked, use the retention tool.

Step 1: Use the retention tool to set event 1 and event 2 as session to session or engagement behavior to engagement behavior

Step 2: Group by count of Interaction with Key Feature

A retention analysis for Session to session grouped by users who have done completed purchase

Looking at this retention table, we can predict that someone is more likely to be an avid user of the product after completing a purchase 10 times. Once this is identified, you can focus your efforts on getting users to the point through marketing campaigns, changes in product education, and changes in UI.

The results of the previous query

Was this article helpful?

Yes No

Thank you for your feedback!

Last updated October 28, 2020.

product managementproduct managers
  • Blog
  • Partners
  • Security
  • Terms
  • About
  • Careers
  • Privacy
  • Contact Us

© 2021 Heap, Inc.